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1. Introduction

At present, few exact results are available on the phase structure of supersymmetry break-

ing backgrounds in either gauge or string theories. Indeed, whereas the requirement of

holomorphicity determines the form of many corrections to the vacua of a supersymmetric

theory, generically no such constraint is available when supersymmetry is broken. It is nev-

ertheless natural to consider non-supersymmetric metastable vacua of a supersymmetric

theory because the underlying supersymmetry of the theory allows more control over the dy-

namics of supersymmetry breaking. Non-supersymmetric metastable string constructions

have been studied in [1 – 7]. Recent progress in finding non-supersymmetric metastable

vacua in supersymmetric QCD-like field theories was achieved in [8] and subsequent string

theory realizations of this work [9 – 12].

On the other hand, it is by now well-established that in certain cases the large N

supersymmetric dynamics of open strings at strong ’t Hooft coupling admits a holographic

dual description in terms of weakly coupled closed strings. Notable examples are the

AdS/CFT correspondence [13 – 15] and geometric transitions [1, 16, 17]. In this note we

exploit the fact that large N holography is expected to be a more general property of many

non-supersymmetric gravitational systems to analyze the phase structure of a strongly

coupled supersymmetry breaking background. In particular, we further study the large N

dual of a configuration of branes and anti-branes with N = 0 supersymmetry of the type

recently considered in [6].

More precisely, we study type IIB string theory compactified on the local Calabi-Yau

threefold given by a small resolution of the hypersurface defined by:

y2 = W ′(x)2 + uv (1.1)

where W ′(x) is a polynomial of degree n and x, y, u, v ∈ C. Our brane configuration consists

of spacetime filling D5-branes and anti-D5-branes wrapped over homologous and minimal

size rigid S2’s of the internal geometry. We denote by |Ni| the number of branes or anti-

branes wrapped over the ith S2. Here Ni is understood to be a positive (negative) integer for

D5-branes (anti-D5-branes). In the absence of branes and anti-branes, the resulting theory

in four dimensions would have preserved N = 2 supersymmetry. This system is non-

supersymmetric because each type of brane preserves a different N = 1 supersymmetry.

Even so, this configuration is metastable because the tension of the branes generates a

potential barrier against the expansion of the S2’s.

In the holographic dual theory the original branes and anti-branes wrapping S2’s are

replaced with flux threading topologically distinct S3’s of a new geometry described by a

hypersurface of the form:

y2 = W ′(x)2 + bn−1x
n−1 + · · · + b0 + uv (1.2)

where the bi are normalizable complex deformations of the singular geometry. The x and

y coordinates define a Riemann surface fibered over the coordinates u and v. As shown in

figure 1, each S3 of the new Calabi-Yau reduces to a contour encircling a finite length branch
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cut of the complex x-plane. The size of each S3 is controlled by a flux induced effective

potential. Supersymmetric configurations of this type have been studied in [18]. It was

conjectured in [6] that this same geometric transition remains valid for non-supersymmetric

configurations. In this case, the vacuum is determined by the full potential rather than the

superpotential. Rather importantly, as opposed to a generic N = 1 theory with broken

supersymmetry, at leading order in 1/N , the form of the Kähler potential is fixed by the

special geometry of the manifold.1 For sufficiently low flux quanta the size of each S3

is stabilized at a small value [6]. Throughout this paper we will refer to this location in

moduli space as the semi-classical expansion point.

But as we increase the ’t Hooft coupling the S3’s will expand in size so that higher

order corrections to the effective potential will play a more important rôle in determining

the vacuum of the theory. These corrections are efficiently summarized by an auxiliary

matrix model [19 – 21] which determines the classical periods of the closed string dual.

One of the purposes of this paper is to show that such corrections generate an intricate

phase structure which is absent in the supersymmetric case.

When supersymmetry is broken, a metastable system of fluxes will eventually lower its

energy by annihilating flux lines. Rather than treating an individual system, it is there-

fore more appropriate to treat the totality of all possible flux configurations which admit

metastable vacua. To this end, we invert the question of finding critical points of Veff and

instead ask: Given a point in moduli space, which brane/anti-brane configurations would

stabilize the moduli at this geometry? Framing the question this way, we find necessary

conditions for the existence of mutually non-supersymmetric metastable configurations of

D5- and anti-D5-branes wrapped over the S2’s of the original geometry. We next analyze

the phase structure of the two cut geometry.

Except when explicitly noted, the remainder of our results apply to the two cut geom-

etry with the corresponding S3’s supported by purely RR three form flux. By determining

the vacua of some special flux configurations, we argue that N1, N2 and θYM respectively

control the sizes and relative orientation of the cuts. For N1 = −N2 and θYM arbitrary,

we find metastable vacua such that the branch cuts are mirror reflections across an axis

of the complex x-plane. For N1 and N2 arbitrary and θYM = 0, we find metastable vacua

such that the branch cuts align along a common axis of the complex x-plane.

Even so, both supersymmetric and non-supersymmetric flux configurations admit

many other potentially metastable vacua. Indeed, even non-supersymmetric U(N) Yang-

Mills theory admits O(N) metastable vacua which become exactly stable in the N =

∞ limit [22, 23]. Heuristically, these vacua are non-supersymmetric analogues of the

Tr(−1)F = N energetically degenerate supersymmetric confining vacua present in pure

N = 1 SU(N) super Yang-Mills theory [24]. For multi-cut geometries these other vacua are

obtained at leading order in the closed string dual by rotating the branch cuts by a discrete

angle π/ |Ni|. Although this geometric symmetry is deformed by higher order corrections,

the corresponding supersymmetric confining vacua remain exactly degenerate in energy.

1As explained in [6], this is due to the fact that at leading order in 1/N , the fluxes spontaneously break

N = 2 supersymmetry.
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Figure 1: Depiction of the geometric transition from the open string picture with branes wrapped

over minimal size S2’s (top) to the large N closed string dual where the branes and homologous

S2’s have been replaced by flux threading topologically distinct S3’s of a new geometry (bottom).

The lines with red crosses denote finite length branch cuts on the Riemann surface of the local

geometry after the transition. In the open string picture the area of the S2 in the middle of the

bulge is approximately |W ′(x)|. When branes are wrapped over these minimal size S2’s, the bare

tension of the branes creates a potential barrier against brane/anti-brane annihilation.

By contrast, we find that for non-supersymmetric confining vacua, the two loop con-

tribution to the potential lifts this degeneracy so that it is energetically favorable for the

branch cuts to align along a common axis. This corresponds to an alignment of phases in

the glueball fields. Physically this follows from the fact that the potential energy due to

the Coulomb attraction between the branes and anti-branes is lowest for such a configura-

tion. We find that the energy dependence of the vacuum as a function of θYM agrees with

the form expected in large N gauge theories.2 In addition, we also find a large number

2Upon imbedding our non-compact geometry into a compact Calabi-Yau threefold, this realignment

generates a potential for the axion. Although we do not develop this into a fully viable phenomenological

model, we believe that this mechanism may be of independent interest for solving the strong CP problem.
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of potentially metastable vacua in accord with expectations from large N arguments. In-

deed, although there is a single energetically preferred confining vacuum, the rate of decay

to this lowest energy configuration is suppressed by large N effects. Thus, once we have

established the existence of a single metastable brane/anti-brane configuration, general

arguments from large N gauge theories imply the presence of a large number of additional

potentially metastable vacua.

Restricting further to the cases N1 = −N2 and |N1| ≫ |N2| with the branch cuts

aligned with the energetically preferred configuration along the real axis of the complex

x-plane, we find that for sufficiently large ’t Hooft coupling, but far before the cuts touch,

the theory undergoes a phase transition which lifts the metastable vacua present at weak

coupling. This is a novel phenomenon where strong coupling effects lead to a loss of stability

in a classically metastable brane/anti-brane system.

Once the ’t Hooft coupling is large and metastability is lost, we can ask about the fate

of the vacuum. In order to address this, it is necessary to go beyond the regime where a

perturbative computation of the potential is valid. Since we have the exact potential at

large N , we can study this regime as well. Using a combination of numerical and analytic

arguments, we find that the dynamics of the fluxes drive the moduli to a configuration

where the branch cuts nearly touch. Close to this region in moduli space, a gas of nearly

tensionless domain walls will typically cause the system to tunnel to a metastable vacuum

of lower flux. When this does not occur, the cuts can touch and additional light magnetic

states condense. In this case, we find that the resulting geometry is a non-Kähler manifold.

The organization of the rest of this paper is as follows. In section 2 we establish notation

and review the conjecture of [6] on the large N dual of spacetime filling D5-branes and anti-

D5-branes wrapped over S2’s of a non-compact Calabi-Yau threefold. In section 3 we derive

necessary conditions for the existence of a metastable vacuum. Beginning in section 4 we

specialize to the two cut geometry and explain how the fluxes control the sizes and relative

orientation of the branch cuts. We next show in section 5 that a two loop effect lifts the

degeneracy in energy between the confining vacua of the theory so that it is energetically

favorable for the branch cuts (i.e. the phases of the glueball condensates) to align along a

common axis. In this same section we also find a large number of additional potentially

metastable vacua and compare the θYM dependence of the vacuum energy density with

general expectations from large N gauge theories. In section 6 we show that for sufficiently

large ’t Hooft coupling, this two loop effect lifts the metastable vacua present near the

semi-classical expansion point. This causes the branch cuts to expand until they nearly

touch. Section 7 discusses the behavior of the system near this region of moduli space, and

section 8 presents our conclusions and possible avenues of further investigation.

2. Geometrically induced metastability

In this section we set our notation and discuss in more detail the large N dual descrip-

tion of the metastable brane/anti-brane configuration we shall study in this paper. The

open string description of our system consists of D5-branes and anti-D5-branes which fill

Minkowski space and wrap n minimal size S2’s of a local Calabi-Yau threefold defined by
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the hypersurface:

y2 = W ′(x)2 + uv (2.1)

where x, y, u, v ∈ C and W ′(x) ≡ g(x−a1) · · · (x−an) is a degree n polynomial. Because the

geometry is non-compact, the ai correspond to non-normalizable modes which determine

the relative separation between the branes. The minimal size S2’s of the geometry are all

homologous and are located at the points where W ′(x) vanishes. Indeed, at a generic point

of the complex x-plane the area of an S2 is given by the relation:

A(x) =
(∣∣W ′(x)

∣∣2 + |r|2
)1/2

(2.2)

where r denotes the size of the S2 at x = ai. Because the branes and anti-branes preserve

different supersymmetries, the corresponding system does not preserve any supersymmetry.

While there is no topological obstruction to the branes and anti-branes annihilating, the

system is nevertheless geometrically metastable because the bare tension of the branes

produces a potential barrier against the expansion of the branes. See figure 1 for the local

behavior of this configuration.

In the holographic dual description, the branes and anti-branes wrapping n homologous

S2’s of the original geometry are replaced by fluxes threading the n topologically distinct

S3’s of the new geometry. The local Calabi-Yau threefold after the transition is defined by

the equation:

y2 = W ′(x)2 + bn−1x
n−1 + · · · + b0 + uv (2.3)

where the bi correspond to the n normalizable complex deformation parameters of the

Calabi-Yau. This complex equation defines a two-sheeted Riemann surface fibered over

the u and v coordinates. The bi split the double roots of W ′(x)2, creating n finite length

branch cuts on the complex x-plane of the Riemann surface. See figure 2 for a depiction

of this geometry.

The n S3’s correspond to n 3-cycles Ai such that Ai ∩Aj = 0 for all i, j. Dual to each

A-cycle is a non-compact B-cycle such that Ai ∩Bj = −Bj ∩Ai = δij and Bi ∩Bj = 0 for

all i, j. At the level of the Riemann surface, the Ai reduce to n distinct counter-clockwise

contours encircling each of the n branch cuts of the Riemann surface and the Bi reduce

to contours which extend from the point x = Λ0 on the lower sheet to the point x = Λ0

on the upper sheet. The IR cutoff defined by Λ0 in the geometry is identified with a UV

cutoff in the open string description. The periods of the holomorphic three form Ω along

the cycles Ai and Bi define a basis of special coordinates for the complex structure moduli

space:

Si =

∫

Ai

Ω, Πi =
∂F0

∂Si
=

∫

Bi

Ω (2.4)

where F0 denotes the genus zero prepotential. In the absence of fluxes, each Si corresponds

to the scalar component of a U(1) N = 2 vector multiplet. Once branes are introduced,

each Si is identified in the open string description with the size of a gaugino condensate.

Defining the period matrix:

τij =
∂Πi

∂Sj
=

∂2F0

∂Si∂Sj
, (2.5)
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A n−1 A i

B i

B n

Λ0

A n

B n−1

Figure 2: Depiction of the complex x-plane corresponding to the Riemann surface defined by

equation (2.3) with uv = 0. The compact A-cycles reduce to counterclockwise contours which

encircle each of the n branch cuts of the Riemann surface. The non-compact B-cycles reduce to

contours which extend from x = Λ0 on the lower sheet (dashed lines) to x = Λ0 on the upper sheet

(solid lines).

to leading order in the 1/N expansion, the Kähler metric for the effective field theory is

Im τij . For future use we also introduce the Yukawa couplings:

Fijk ≡ ∂3F0

∂Si∂Sj∂Sk
. (2.6)

We now describe the large N dual description of brane configurations which preserve

N = 1 supersymmetry. To this end, recall that for supersymmetric flux configurations the

flux-induced superpotential is [25]:

Weff =

∫
H3 ∧ Ω = α (S1 + · · · + Sn) + (N1Π1 + · · · + NnΠn) (2.7)

where H3 denotes the net three form flux after the system undergoes a geometric transition:

H3 = HRR + τIIBHNS. (2.8)

In the above equation, HRR is the net RR three form field strength, HNS is the net NS

three form field strength and τIIB = C0 + ie−φ is the type IIB axio-dilaton. Explicitly,

Ni =

∫

Ai

H3, α = αi = −
∫

Bi

H3 (2.9)

for all i. Note in particular that when Ni = pi + τIIBqi is a general complex number, this

describes the geometric transition of a (pi, qi) 5-brane wrapped over the ith S2 with pi

units of D5-brane charge and qi units of NS5-brane charge. In the open string theory, the

parameter α corresponds to minus the complexified gauge coupling evaluated at the UV

cutoff:

α = α (Λ0) = −θYM

2π
− 4πi

g2
YM

. (2.10)
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The purely Si sector of the theory is described by the Lagrangian density:

LS =
1

g2
s

Λ−4
UV (Im τ)ij ∂µSi∂µSj + Λ4

UVVeff

(
Si, Sj

)
(2.11)

where ΛUV is a UV mass scale which is potentially different from Λ0, and Veff is given by:3

Veff = ∂kWeff

(
1

Im τ

)kl

∂lWeff =
(
αk + Nk′

τk′k

)(
1

Im τ

)kl (
αl + τ ll′N

l′
)

. (2.12)

When it will not cause any confusion, we will work in units where ΛUV is normalized to

unity.

Having reviewed the large N dual description for N = 1 brane configurations, we now

describe the N = 0 analogue of this description when some of the branes are replaced by

anti-branes. In [6] it was conjectured that the form of the flux-induced effective potential

for the Si’s is essentially unchanged from the supersymmetric case. To properly compare

the energy of both branes and anti-branes simultaneously, it is appropriate to shift Veff by

a multiple of the bare tensions of the branes [6]:

Veff 7→ Veff +
8π

g2
YM

(N1 + · · · + Nn) . (2.13)

2.1 Matrix models and Veff

In this subsection we review the connection between matrix models and special geometry.

As originally proposed in [19], the genus zero prepotential of the geometry defined by

equation (2.3) is exactly computed by the planar limit of a large M auxiliary matrix model

with partition function:

ZMM =
1

Vol (U (M))

∫
dΦ exp

(
− 1

gs
TrW (Φ)

)
(2.14)

where Φ is a holomorphic M × M matrix and the above matrix integral should be under-

stood as a contour integral. The prepotential of the n-cut geometry near the semi-classical

expansion point is given by expanding the eigenvalues of Φ about the n critical points of

the polynomial W . The usual eigenvalue repulsion term of the matrix model causes these

eigenvalues to fill the n cuts of the geometry after the geometric transition. With Mi

eigenvalues sitting at the ith cut of the geometry, this matrix model may be recast as an

n-matrix model of the form:

ZMM =
1

n∏

i=1

Vol (U (Mi))

∫
dΦ1 · · · dΦn exp

(
− 1

gs

n∑

i=1

TrWi (Φi) −
1

gs
TrWint (Φ1, . . . ,Φn)

)

(2.15)

3In string frame, the overall gs scaling of the superpotential and Kähler potential is Weff/gs and K/g2
s ,

respectively. When it will not cause confusion, we shall suppress the gs scaling of these two quantities in

our computations.
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in the obvious notation. We caution the reader that the numbers Mi are unrelated to the

wrapping numbers of the branes.

The connection between the above matrix model and the special geometry of the

Calabi-Yau threefold defined by equation (2.3) is obtained as follows. The periods of the

A-cycles are given by the partial ’t Hooft couplings of the matrix model [19]:

Si = gsMi. (2.16)

Evaluating ZMM in the saddle point approximation, the planar limit of the free energy for

the matrix model is identified with the genus zero prepotential for the complex structure

moduli space of the Calabi-Yau threefold:

F0 = Fmeasure + Fpert (2.17)

where Fmeasure corresponds to contributions from the Vol (U (Mi)) factors in the path-

integral measure [26] and Fpert corresponds to perturbative contributions from planar

Feynman diagrams:

2πiFmeasure =

n∑

i=1

1

2
S2

i log
Si

Λ3
0

(2.18)

2πiFpert = −
n∑

i=1

SiW (ai) +
∑

0≤i1,...,in

Ci1···inSi1
1 · · ·Sin

n . (2.19)

From the perspective of the open string theory, the contribution Fmeasure reproduces

the expected Veneziano-Yankielowicz terms in the superpotential. At leading order in the

expansion of the periods about small Si, these contributions serve to stabilize the magnitude

of the glueball fields at the exponentially small value ∼ exp
(
−8π2/g2

YM |Ni|
)
. In addition to

this leading order behavior, the power series in the Si’s given by Fpert produces subleading

corrections to the form of the glueball potential. Although the form of such corrections are

difficult to calculate for a general confining gauge theory, in the present case the integrable

structure of the matrix model ensures that the Ci1...in are in principle calculable.

2.2 Leading order behavior

Following [6], we now review the leading order behavior of metastable critical points of

Veff near the semi-classical expansion point. Expanding the genus zero prepotential to

quadratic order in the Si’s, the period matrix is:

τii =
1

2πi
log

Si

W ′′(ai)Λ2
0

, τij =
−1

2πi
log

Λ2
0

∆2
ij

(2.20)

for all i 6= j. In the above expression ∆ij = ai − aj is the relative separation between

the minimal cycles over which branes or anti-branes wrap. From the perspective of the

auxiliary matrix model, this leading order behavior corresponds to the sum of the measure

factor terms and all one loop planar diagrams. These latter perturbative contributions

give rise to terms in the prepotential proportional to SiSj . See figure 3 for the one loop

– 9 –
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Figure 3: Topologically distinct one loop planar diagram contributions to the prepotential for the

two cut matrix model. Solid lines denote branes and dashed lines denote anti-branes.

Figure 4: Plot of Veff/ |α|2 in the one loop approximation along the locus S1/g∆3 = −S2/g∆3 > 0

for a flux configuration with N1 = −N2. In this plot Λ0/∆ ∼ 104 and |N1/α| ∼ 0.1. In the

neighborhood of the semi-classical expansion point there is a single critical point which is metastable.

contributions to the prepotential of the two cut geometry. For sufficiently small |Ni| the

complex structure moduli are stabilized at exponentially small values [6]:

SNi>0 = ζiW
′′ (ai) Λ2

0

Nj>0∏

j 6=i

(
Λ0

∆ij

)2
˛̨
˛

Nj
Ni

˛̨
˛ Nk<0∏

k 6=i

(
Λ0

∆ij

)2
˛̨
˛ Nk

Ni

˛̨
˛
exp

(
−2πiα

|Ni|

)
(2.21)

SNi<0 = ζiW
′′ (ai) Λ2

0

Nj>0∏

j 6=i

(
Λ0

∆ij

)2
˛̨
˛

Nj
Ni

˛̨
˛ Nk<0∏

k 6=i

(
Λ0

∆ij

)2
˛̨
˛ Nk

Ni

˛̨
˛
exp

(
2πiα

|Ni|

)
(2.22)

where ζi denotes an N th
i root of unity. As expected, there is a mass splitting at leading order

between the bosons and fermions which explicitly demonstrates that supersymmetry is

broken. Finally, at leading order there is only a single critical point of the physical potential

near the semi-classical expansion point corresponding to the metastable minimum. See

figure 4 for an example of this behavior in the two cut geometry.

2.3 Two loop corrections

We now describe two loop corrections to Veff . Figure 5 depicts the collection of topologically

– 10 –
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Figure 5: Two loop planar diagram contributions to the genus zero prepotential of the two cut

geometry. Solid lines denote branes and dashed lines denotes anti-branes.

distinct diagrams which contribute to the cubic term of the genus zero prepotential. Rather

than describe the relative contribution of each of the twelve topologically distinct two

loop planar diagrams, we merely give an example of the relevant combinatorics. The

combinatorial factors for the two diagrams with purely solid lines corresponding to the

disk with two holes and two disks attached by a tube in figure 5 are respectively 1/6 and

1/2. The remaining two loop contributions generate additional terms at cubic order in the

genus zero prepotential and are computed in [27].

3. Critical points of Veff

In this section we derive necessary conditions that a flux configuration must satisfy in order

for the flux induced effective potential:

Veff =
(
αk + Nk′

τk′k

)(
1

Im τ

)kl (
αl + τ ll′N

l′
)

(3.1)

to possess a critical point. Because such configurations are not absolutely stable, the

amount of flux through each A-cycle will decrease over a sufficiently long time scale. Rather

than treating one particular metastable flux configuration, it is therefore more appropriate

to treat the totality of all flux configurations which admit metastable vacua. Indeed, we

ask the inverse question: Given a point in moduli space, what configuration of fluxes would

stabilize the moduli at this point? To this end, we solve for the fluxes as a function of the

critical point.

In what follows, we shall not require that the flux vector N be an element of an integral

lattice. Indeed, because the critical points of the effective potential are invariant under an

overall rescaling of α and the Ni, we may approximate the Ni as continuous parameters

once they have been rescaled to a sufficiently large value. Further, we shall at first allow

configurations with Ni ∈ C.

The critical points are given by differentiating the effective potential with respect to
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the Sj for j = 1, . . . , n:

0 = −2i∂jVeff = (α + Nτ)t
1

Im τ
(∂jτ)

1

Im τ

(
α + τN

)
(3.2)

≡ W t (∂jτ)V (3.3)

where we have introduced two n-component column vectors V and W :

V =
1

Im τ

(
α + τN

)
(3.4)

W =
1

Im τ
(α + τN) (3.5)

and for compactness we have suppressed all indices determined by matrix multiplication.

Solving for the n-component vectors N and α in terms of V , W and τ yields:

2iN = V − W (3.6)

2iα = τW − τV . (3.7)

It is therefore sufficient to express V and W as functions of the moduli.

Before proceeding to the solution of these equations, we now argue that for a given point

in moduli space there are at most 2n flux configurations such that this point is a critical

point of Veff . In addition to the n conditions of equation (3.3), we obtain n− 1 conditions

from equation (3.7). Indeed, because the column vector α is proportional to the vector

with 1’s for all entries, the n − 1 dimensional subspace orthogonal to α is independent of

both the moduli and the fluxes. Letting T0, . . . , Tn−2 denote the n− 1 independent vectors

which span this subspace, the dot product of the Ti with equation (3.7) yields an additional

n − 1 equations:

0 = W tτTi − V
t
τTi (3.8)

for i = 0, . . . , n − 2.

Combining equations (3.3) and (3.8) yields a total of 2n− 1 complex equations for 2n

complex variables. Because the critical points are insensitive to the rescaling of the n + 1

component row vector (α,N1, . . . , Nn), we conclude that up to an overall rescaling by a

complex number, there are a finite number of fluxes which satisfy the required conditions.

Finally, because the system consists of n − 1 linear equations and n quadratic equations,

the number of “critical fluxes” at a given point in moduli space is at most 2n.

3.1 Non-supersymmetric solutions

We now restrict our attention to flux configurations which break supersymmetry. In this

case, the vectors V and W each have at least one non-zero component. To isolate the

projective nature of the solutions, we introduce affine versions of V and W which are

completely fixed by the moduli dependent matrices τ and ∂iτ . Without loss of generality,

we may take the non-zero component of V to be V1 and that of W to be Wn. Now define

rescaled n-component vectors ν and ω such that their complex conjugates satisfy:

V = V1ν ≡ V1 |ν〉 V t = V1 〈ν| (3.9)

W = Wnω ≡ Wn |ω〉 W t = Wn 〈ω| . (3.10)
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where to reduce notational clutter we have switched to bra and ket notation. The 2n − 2

non-trivial components of ν and ω are therefore fixed as functions of the moduli by the

2n − 2 equations:

0 = 〈ω| ∂jτ |ν〉 (3.11)

0 = 〈ω| τ |T0〉 〈ν| τ |Tk〉 − 〈ν| τ |T0〉 〈ω| τ |Tk〉 (3.12)

where j = 1, . . . , n and k = 1, . . . , n − 2 with N and α given by:

2i

C
|N〉 = |ν〉 〈ω| τ |T0〉 − |ω〉 〈ν| τ |T0〉 (3.13)

2i

C
|α〉 = τ |ω〉 〈ν| τ |T0〉 − τ |ν〉 〈ω| τ |T0〉 (3.14)

where C is an non-zero complex constant which is undetermined by the equations. Because

the form of these equations is somewhat similar to those obtained in the study of the

attractor equations of Calabi-Yau black holes [28 – 31], we will loosely refer to the above

as our attractor-like equations.

3.1.1 Brane types and the real flux locus

Our goal is to study the large N dual description of a system of D5-branes and anti-D5-

branes. Note, however, that the attractor-like equations (3.13) and (3.14) indicate that

every point in moduli space is a critical point of Veff for some configuration of Ni ∈ C. To

impose the additional requirement that the Ni describe D5- and anti-D5-branes, we must

further require that all of the ratios Ni/Nj be real numbers. This defines an n + 1 real

dimensional subspace inside the 2n real dimensional moduli space.

Although a complete characterization of the real flux locus is non-trivial, a partial

description exists in the special case when the n cuts of the geometry are all aligned along

the real axis of the complex x-plane (so that the coefficients of the polynomial defining

the Calabi-Yau threefold are all real) and with Λ0 chosen so that the τij are all purely

imaginary. We now show that in this case the ratios Ni/Nj are all real and that θYM = 0.

First note that there exists a finite neighborhood around the semi-classical expansion point

such that τij and Fijk are pure imaginary. Combining this with the leading order behavior

of the Si’s described in subsection 2.2, it follows that there exists a neighborhood around

the semi-classical expansion point such that the operators |ν〉 〈ω| and |ω〉 〈ν| correspond to

matrices with real entries. By inspection of equations (3.13) and (3.14), this implies that

Ni/Nj is real and α/Ni is imaginary for all i, j. Note that as expected, the Ni control the

sizes of the cuts and the parameter θYM controls the relative orientation of the cuts in the

geometry.
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3.1.2 Example: two cut geometry

With notation as in section 3.1, we have:

|T0〉 =

[
1

−1

]
, |ν〉 =

[
1

V 2/V1

]
, |ω〉 =

[
W1/W2

1

]
, (3.15)

|ν〉 〈ω| =

[
ρw 1

ρvρw ρv

]
, |ω〉 〈ν| =

[
ρw ρvρw

1 ρv

]
(3.16)

where we have introduced:

ρv ≡ V2/V1 = −d3 ±
√

d2
3 − 4d1d2

2d2
(3.17)

ρw ≡ W1/W2 = −d3 ±
√

d2
3 − 4d1d2

2d1
(3.18)

with:

d1 = det

[
F111 F112

F112 F221

]
, d2 = det

[
F112 F221

F221 F222

]
, d3 = det

[
F111 F112

F221 F222

]
. (3.19)

The ± signs of equations (3.17) and (3.18) are correlated. The requirement that g2
YM > 0

leads to an unambiguous assignment of brane type for each branch. Switching from the

+ to the − branch of equations (3.17) and (3.18) changes all branes (anti-branes) into

anti-branes (branes).

4. Fluxes and geometry

Unless explicitly noted, in the rest of this paper we restrict our analysis to the phase

structure of the two cut geometry with the corresponding S3’s supported by purely RR

three form flux satisfying the condition N1/N2 < 0. In this section we explain in more

detail how N1, N2 and θYM respectively control the sizes and relative orientation of the

branch cuts.

Recall that the two cut geometry is given by the defining equation:

y2 = W ′(x)2 + b1x + b0 + uv (4.1)

where W ′(x) = g(x − a1)(x − a2) and b1 and b0 control the sizes and orientations of the

branch cuts by splitting the double roots ai to a±i . When uv = 0, this is the defining

equation for an elliptic curve. Without loss of generality, we may take the ai to be real

numbers such that a1 > a2. When the cuts are small, we have [18]:

S1 ≃ g

32

(
a+

1 − a−1
)2 (

a+
1 + a−1 − a+

2 − a−2
)

(4.2)

−S2 ≃ g

32

(
a+

2 − a−2
)2 (

a+
1 + a−1 − a+

2 − a−2
)
. (4.3)

It thus follows that rotating the branch cuts in the complex x-plane changes the phases

of the Si’s. Note that equations (4.2) and (4.3) are corrected at higher order by a real
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analytic power series in the a±i . When S1 > 0 > S2, the branch cuts of the geometry lie

on the real axis of the x-plane. Finally, for future use we set ∆ = a1 − a2.

It follows from the discussion in subsection 3.1.1 that the space of critical points which

satisfy the condition N1/N2 < 0 defines a three real dimensional subspace of the four real

dimensional subspace locally described by the coordinates S1 and S2.

Although an exact characterization of this subspace is beyond our reach, we can still

provide a crude sketch by considering various special limits. At leading order in the expan-

sion of the periods, the critical points of the effective potential for N1 > 0 > N2 are [6]:

S1

g∆3
= ζ1

(
Λ0

∆

)2 (
Λ0

∆

)2
˛̨
˛ N2

N1

˛̨
˛
exp

(
2πiα

|N1|

)
(4.4)

− S2

g∆3
= ζ2

(
Λ0

∆

)2 (
Λ0

∆

)2
˛̨
˛ N1

N2

˛̨
˛
exp

(
−2πiα

|N2|

)
(4.5)

where the ζi are N th
i roots of unity for i = 1, 2 and label the distinct confining vacua of the

low energy theory. Observe that N1 and N2 determine the magnitudes of S1 and S2. The

Ni therefore determine the sizes of the branch cuts in the closed string dual. Further, θYM

controls the relative phases of S1 and S2. Indeed, as θYM varies, the branch cuts rotate

in opposite directions. In this section we shall assume for simplicity that ζ1 = ζ2 = 1.

This will necessarily limit the scope of our analysis. We will return to this important point

later on in section 5 where we will show that there is an energetically preferred confining

vacuum corresponding to both of the branch cuts aligned along the real axis of the complex

x-plane.

In the next two subsections we show that the flux configuration N1 = −N2 admits

metastable critical points on a Z2 symmetric locus in moduli space where S1 = −S2. In

this case the branch cuts are of equal size and are mirror reflections across the line halfway

between a1 and a2. We next show that flux configurations given by N1, N2 real and

θYM = 0 admit metastable critical points with −S2, S1,Λ0 > 0. In this case the branch

cuts are of different sizes but are both aligned along the real axis of the x-plane.

4.1 Geometry of the Z2 symmetric locus

We now consider the geometry of the locus S1 = −S2. Setting uv = 0, the Riemann surface

defined by equation (4.1) is invariant under the mapping σ:

x 7→ −x, y 7→ −y (4.6)

provided that g, b0, ib1 ∈ R, and a1 = −a2.

We show that invariance under this Z2 symmetry implies S1 = −S2. The Si’s reduce

to line integrals on the Riemann surface:

S1 =
1

2πi

∮

A1

ydx, S2 =
1

2πi

∮

A2

ydx (4.7)

where by abuse of notation we let the Ai also refer to the reduction of the A-cycles to

two counterclockwise oriented closed loops encircling the two branch cuts of the geometry.
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1a+

1a−

1a−
2a−

2a−
1a+

2a+

i) ii)

Figure 6: Depiction of the relative orientations of the branch cuts in the two cut geometry for: i)

S1 = −S2 and ii) S1 = −S2.

Whereas the differential element ydx is by construction invariant under the map σ, the

1-cycles A1 and A2 transform as:

σ (A1) = −A2, σ (A2) = −A1. (4.8)

It therefore follows that:

S1 + S2 = 0. (4.9)

On the other hand, it follows from a general residue computation that [18]:

S1 + S2 = − 1

4g
b1. (4.10)

We therefore conclude that when S1 = −S2 > 0, the branch cuts are of equal size and

are aligned along the real axis of the x-plane. More generally, b0 (resp. b1) predominantly

controls the size (resp. relative orientation) of the branch cuts.

4.2 Flux configurations of the Z2 symmetric locus

We now show that there exists a finite region in moduli space around the semi-classical

expansion point such that the flux configuration N1 = −N2 admits critical points satisfying

S1 = −S2. It follows from the explicit expressions for the τij given in appendix A that

near the semi-classical expansion point and along the locus S1 = −S2:
[

τ11 τ12

τ12 τ22

]
=

[
−τ22 −τ12

−τ12 −τ11

]
− M − M

2πi

[
1 1

1 1

]
(4.11)

where M ≡ log
(
Λ2

0/∆
2
)

and:

F111 = F222, F112 = F122. (4.12)

Note that the above relations do not require Λ0 to be a real number.

We now apply the above relations in order to simplify the attractor-like equations (3.13)

and (3.14). Equation (4.12) implies that along this locus, the determinants of equa-

tion (3.19) satisfy d1 = d2 and d3 = d3 so that the discriminant d2
3 − 4d1d2 is a real

number. It thus follows from the formulae in appendix A that near the semi-classical

expansion point:

d2
3 − 4d1d2 > 0. (4.13)
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This in turn implies:

ρv = ρw. (4.14)

Substituting equations (4.11) and (4.14) into the attractor-like equations (3.13) and (3.14)

yields:

2i

C ′

[
N1

N2

]
= (1 − ρw)

[
1

−1

]
(4.15)

2i

C ′α =

(
τ22 + τ12 + ρw(τ11 + τ12) +

M − M

2πi
(1 + ρw)

)
(4.16)

where C ′ is a common rescaling factor. Hence, N1 = −N2 and:

α

N1
=

1 + ρw

1 − ρw

(
τ11 + τ12 +

M − M

2πi

)
+

τ22 − τ11

1 − ρw
. (4.17)

4.3 Flux configurations of the real locus

When S1 > 0 > S2, an argument similar to the one given in the previous subsection

establishes that in a finite neighborhood of the semi-classical expansion point, both ρv and

ρw of equation (3.17) and (3.18) are again real. In this case τij = −τij − (M −M)/2πi and

the attractor-like equations may be written as:

2i

C

[
N1

N2

]
=

[
2ρw (τ11 − τ12) + (1 + ρvρw) (τ12 − τ22)

2ρv (τ12 − τ22) + (1 + ρvρw) (τ11 − τ12)

]
(4.18)

2i

C
α = (ρvρw − 1) det τ +

M − M

2πi
(1 + ρv) (τ12 − τ22 + ρw (τ11 − τ12)) . (4.19)

Because τij − τ12 is pure imaginary and ρv and ρw are purely real, we conclude that N1/N2

is purely real. Further, when M = M , the ratio α/N1 is pure imaginary. We therefore

conclude that for θYM = 0 and M = M , Veff admits critical points corresponding to

geometries with the branch cuts aligned along the real axis of the x-plane.

5. Confining vacua and glueball phase alignment

In this section we show that two loop corrections to our metastable brane/anti-brane

system generate an energetically preferred confining vacuum. In the closed string dual

this preferred vacuum corresponds to a configuration where the branch cuts align along a

common axis. We next estimate the tunneling rate for glueball phase re-alignment and find

the rate of decay to this lowest energy configuration is suppressed by large N effects which

can only be countered by an exponentially small glueball field. Viewing our construction

as imbedded inside a compact Calabi-Yau, string theory requires that θYM be treated as

a dynamical field. We show that the same effect which lifts the degeneracy between the

confining vacua generates a potential for θYM which is consistent with general expectations

from large N gauge theories.
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5.1 Degenerate confining vacua

It is well-known that pure super Yang-Mills theory with gauge group SU(N) has N con-

fining vacua counted by the Witten index Tr (−1)F = N . Indeed, the glueball field of the

theory attains N distinct values:

S = ζΛ3 (5.1)

where ζ denotes an N th root of unity and Λ is the holomorphic scale of confinement for

the gauge group SU(N).

We now show that at leading order in the expansion of the periods, the confining

vacua of the n cut geometry are also energetically degenerate. To this end, note that

equation (2.20) implies that for i 6= j, τij is constant. The claimed degeneracy now follows

because the critical points of Veff are given by extremizing with respect to the variables

Ni log
(
Si/

(
W ′′(ai)Λ

2
0

))
for all i.

But whereas the energy of each confining vacuum in the supersymmetric case is

zero to all orders in an expansion of the periods, higher order corrections in the non-

supersymmetric case should lift this degeneracy. Indeed, our expectation is that the

Coulomb attraction between branes and anti-branes will cause the branch cuts of the

closed string dual to align in order to more efficiently annihilate flux lines. We now confirm

this in the case of the two cut geometry.

5.2 Higher order corrections in the two cut geometry

At leading order, the energy density of the brane/anti-brane system is [6]:

E(0) =
8π

g2
YM

(|N1| + |N2|) −
2

π
|N1| |N2| log

∣∣∣∣
Λ0

∆

∣∣∣∣
2

. (5.2)

Because E(0) does not depend on the phases of the glueball fields, the confining vacua are

energetically degenerate.

At higher order the effective potential takes the form:

Veff = V
(0)
eff + Vpert. (5.3)

Incorporating the two loop correction to τij given in appendix A lifts the degeneracy in

energy densities:

E = E(0) − 10 |N1| |N2|
π

(
t1 + t1 + t2 + t2

)
, (5.4)

where t1 ≡ S1/(g∆3) and t2 ≡ −S2/(g∆3) are given by equations (4.4) and (4.5), respec-

tively. The confining vacuum with the lowest energy density is given by the configuration

with t1 and t2 as close to being real positive numbers as possible. Without loss of gener-

ality, the geometrical significance of this result can be seen when ∆ > 0. It now follows

from equations (4.2) and (4.3) and the remarks below these equations that in this case the

branch cuts are nearly aligned along the line joining x = a1 and x = a2.
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5.3 Tunneling rates

In the previous subsection we showed that the two loop contribution to Veff lifts the degen-

eracy in energy density between the many confining vacua of the theory. In this subsection

we compute the tunneling rate for glueball phase re-alignment. In particular, we find that

in the strict Ni = ∞ limit with fixed confinement scale, these additional confining vacua

become exactly stable. For finite Ni, this leads to the presence of a large number of addi-

tional metastable vacua of the type generically present in large N gauge theories [23, 24].

On the other hand, treating the glueball field as an exponentially suppressed quantity, we

find that the corresponding tunneling rate increases.

In general, such tunneling events correspond to the nucleation of a bubble of vacuum

with lower energy density inside the higher energy density vacuum. Assuming that in

the Euclidean continuation of Minkowski space that this bubble is an O(4) symmetric

configuration, the thin wall approximation of the tunneling rate is [32]:

Γ ∼ exp (−Sbounce) = exp

(
−27π2

2

T 4

(∆V )3

)
(5.5)

where T is the tension of the domain wall and ∆V is the change in energy density between

the two vacua.

The domain wall solutions separating the confining vacua of the theory are given by

wrapping D5-branes over the A-cycle threaded by positive flux and anti-D5-branes over

the A-cycle threaded by negative flux. We approximate the tension of such a domain wall

using the supersymmetric analogue with N1, N2 > 0:

T =
1

gs

∣∣Weff(ζ1S1, ζ2S2) −Weff(ζ ′1S1, ζ
′
2S2)

∣∣ (5.6)

where ζi and ζ ′i are N th
i roots of unity and the Si’s are evaluated at a supersymmetric

critical point.4 For simplicity, we now restrict our analysis to tunneling events which only

rephase S1. The leading order S1 dependence of Π1 and Π2 is:

2πiΠ1 = S1

(
log

S1

g∆Λ2
0

− 1

)
(5.7)

2πiΠ2 = S1 log
∆2

Λ2
0

(5.8)

The tension of the domain wall solution which interpolates between different discrete phase

choices for S1 is therefore:

T =
1

2πgs

∣∣N1S1

(
ζ1 − ζ ′1

)∣∣ =
1

πgs

∣∣∣∣N1S1 sin
π (l − l′)

N1

∣∣∣∣ . (5.9)

where ζ1 = exp (2πil/ |N1|) and ζ ′1 = exp (2πil′/ |N1|). The change in energy density

between the two vacua has norm:

|∆V | =
20 |N1| |N2| |t1|

π

∣∣∣∣∣cos
(

θ̂ + 2πl

|N1|

)
− cos

(
θ̂ + 2πl′

|N1|

)∣∣∣∣∣ (5.10)

4The additional factor of 1/gs in the tension formula follows from the string frame normalization of the

superpotential described in the footnote above equation (2.12).
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where θ̂/ |N1| denotes the argument of t1.

We now estimate the value of T 4/ (∆V )3 for different glueball phase alignment tun-

neling events. In particular, we show that glueball phase alignment typically proceeds

via a single large drop in energy density rather than a sequence of tunneling events with

smaller drops in energy. As it is irrelevant for the considerations to follow, we suppress all

dependence on θ̂ in the expressions to follow.

First consider the tunneling event from l = N1/2 to l′ = 0 corresponding to a single

instanton process with the largest possible drop in energy density. The bounce action is

proportional to:

SN1/2→0 ∝ T 4/ (∆V )3 =
1

403π

|N1|
|N2|3

|t1|
∣∣g∆3

∣∣4

g4
s

. (5.11)

Because the scaling of the Ni and g−1
s in the large N limit are all comparable, note that

the corresponding bounce action scales as N2 so that for finite t1 this tunneling event is

highly suppressed. Note, however, that it is also natural to consider the limit in which t1
is exponentially suppressed. In this case the tunneling rate increases.

Next consider the tunneling process from the vacuum l = N1/2 to l′ = N1/2 − δ for δ

small compared to N1. In this case, the bounce action is proportional to:

SN1/2→N1/2−δ ∝ T 4/ (∆V )3 =
1

403π3

∣∣∣∣
N1

N2

∣∣∣∣
3 |t1|

∣∣g∆3
∣∣4

δ2g4
s

(5.12)

which scales as N4 in the large N limit. The tunneling rate for a small re-alignment in the

glueball phase is therefore much smaller than that due to a large re-alignment in phase.

This conclusion is further supported by considering the tunneling process from a vac-

uum l = δ to l′ = 0 where δ is again small compared to |N1|. In this case we find that the

bounce action is given by the same expression as equation (5.12). The decay rate due to

rephasing t1 is therefore:

Γ ∼ exp

(
−27

2

1

403π

∣∣∣∣
N1

N2

∣∣∣∣
3 |t1|

∣∣g∆3
∣∣4

δ2g4
s

)
. (5.13)

It therefore follows that as δ increases, the corresponding tunneling rate also increases.

Tuning the parameters of the theory so that t1 remains fixed, note that when the ratio

|N1/N2| ≫ 1, the tunneling rate is suppressed. Conversely, when the ratio |N2/N1| ≫ 1,

the tunneling rate is higher and the smaller cut aligns along the real axis on a shorter time

scale. Physically this corresponds to the fact that the orientation of a cut fluctuates less

as the amount of flux passing through the corresponding A-cycle increases.

5.4 Axion potential

As we have seen above, the two loop contribution to Veff aligns the phases of the glue-

ball fields. It follows from string theory that upon imbedding our model in a compact

Calabi-Yau threefold, θYM must be treated as a dynamical field5 with potential given by

5In a compact Calabi-Yau, the relative separation ∆ between the branes becomes a normalizable mode.

In this section we assume that there exists a mechanism which stabilizes this value.
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equation (5.4) evaluated at the preferred confining vacuum. The effective value of the

θ-angle on the branes and anti-branes follows from the relation:

Si = ζiΛ
3
i = ζi |Λi|3 exp (iθi/ |Ni|) (5.14)

where ζi denotes an |Ni|th root of unity.

We now illustrate the form of the axion potential in the case N1 = −N2 ≡ N . Equa-

tions (4.4) and (4.5) imply that for such flux configurations, the phase of Λ0/∆ does not

contribute to the phases of the Si’s. For simplicity, we further restrict to the case where

g∆3 is purely real. In this case, the effective value of the θ-angles for the branes and

anti-branes satisfy θ1 = −θ2 = θYM. The energy now takes the form:

E = E(0) − 20N2 |t|
π

(
cos

(
θYM + 2πl

N

)
+ cos

(
θYM + 2πl′

N

))
(5.15)

where t ≡ t1 = t2 and l and l′ are integers. Evaluating l and l′ at the preferred confining

vacuum configuration yields a potential for the axion:

Vax (θYM) = E(0)− 40N2 |t|
π

min
l∈Z

(
cos

(
θYM + 2πl

N

))
= E(0)− 40N2 |t|

π
cos

(
θYM

N

)
(5.16)

where in the last equality we have assumed that θYM ∈ [−π, π). This potential has a

minimum at θYM = 0. In the more general case where |N1| 6= |N2| and both ∆ and g∆

acquire complex phases, the minimum of Vax will be shifted away from this value. Naively,

the requirement that the physics remain invariant under the substitution θYM → θYM +2π

appears incompatible with the θYM/N dependence of the final expression of equation (5.16).

That the physics does remain invariant follows from the first equality of equation (5.16).

In fact, this is a general issue in large N gauge theories. Recall that in large N U(N)

pure Yang-Mills theory, the Lagrangian density is:

L = −N

4λ
Tr (FµνFµν) +

θ

64π2
εαβµνTr (FαβFµν) (5.17)

where λ denotes the ’t Hooft coupling of the theory. The dependence of the vacuum energy

density on the θ-angle is:

Evac (θ) = N2f

(
θ

N

)
(5.18)

where f is a function which is well-defined in the large N limit. The factor of N2 arises from

the number of degrees of freedom and the θ/N dependence follows from the requirement

that the energy density must possess a well-defined large N limit [33, 22, 23]. In order to

restore invariance under θ → θ + 2π, it is natural to conjecture that the full θ dependence

of Evac is [22]:

Evac (θ) = N2min
l∈Z

f

(
θ + 2πl

N

)
(5.19)

where the integers l label distinct metastable branches of vacua. It has been shown that

this type of vacuum structure arises both in softly broken supersymmetric QCD with

small gaugino masses [34, 35] as well as from D-brane constructions of large N gauge
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theories [23]. In the limit N = ∞, it is expected that if t1 remains fixed and in particular

is not exponentially suppressed, that these additional vacua become exactly stable [23, 24].

This is indeed consistent with the decay rates given by equations (5.11), (5.12) and (5.13).

Multiple branches of vacua may also be present in QCD [36 – 40].

Returning to the first equality of equation (5.16), note that our expression for the

vacuum energy density is of precisely the form conjectured in equation (5.19). This provides

an exactly calculable example where the expectations discussed above are explicitly borne

out. Indeed, although there are higher order corrections to Evac and therefore to Vax,

to leading order in 1/N , all of these corrections are captured by the closed string dual

description.

6. Breakdown of metastability

When the amount of flux through each S3 is sufficiently low, the corresponding glueball

field is stabilized at a small value. But as shown in section 5, two loop contributions to

Veff generate a preferred confining vacuum which aligns the phases of the glueball fields.

In this section we show that for sufficiently large values of the ’t Hooft coupling, this same

two loop effect lifts the metastable vacua present at weak coupling. Note in particular

that because the corrections to the Kähler potential are of order 1/N , the holographic dual

description of the brane dynamics in terms of the flux induced potential Veff becomes more

accurate as the amount of flux through each S3 increases.

Before proceeding with a more precise analysis, we first give a heuristic derivation of

the value of the ’t Hooft coupling for which we expect higher order corrections to Veff to

lift the metastable vacua present at weak coupling. Recall from equation (5.2) that the

leading order energy density of the brane/anti-brane system is:

E(0) =
8π

g2
YM

(|N1| + |N2|) −
2

π
|N1| |N2| log

∣∣∣∣
Λ0

∆

∣∣∣∣
2

. (6.1)

The first term corresponds to the bare tension of the branes and the second term corre-

sponds to the Coulomb attraction between the branes.

Returning to the discussion near equation (2.13), it follows that when |N1| & |N2| and

N1 > 0 > N2, we have:

E(0) ≥ 8π

g2
YM

(N1 + N2) (6.2)

with similar inequalities for different choices of relative magnitudes and signs for the Ni.

We expect to lose metastability precisely when the Coulomb attraction contribution to the

energy density becomes comparable to the bare tension of the branes. This is near the

regime where E(0) is close to saturating inequality (6.2). This yields the following estimate

for the breakdown of metastability:

1

g2
YM |N1|

∼ log

∣∣∣∣
Λ0

∆

∣∣∣∣
2

(6.3)

where in the above expression we have dropped all factors of order unity.
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Perhaps more surprisingly, this breakdown in metastability is calculable near the semi-

classical expansion point. Indeed, for illustrative purposes we show in the subsection to

follow that for N1 = −N2, the two loop contribution to the glueball potential causes Veff

to develop a local maximum. Beyond this local maximum the potential subsequently rolls

downward beyond the regime where perturbations about the semi-classical expansion point

provide an accurate description.

The rest of this section is organized as follows. For simplicity and with the analysis

of section 5 in mind, we restrict to flux configurations which produce metastable vacua

with the branch cuts aligned along the real axis of the complex x-plane. In subsection 6.1

we illustrate in the case N1 = −N2 that the two loop contribution to Veff generates a

local maximum for the glueball potential. In subsection 6.2 we study the breakdown in

metastability for flux configurations with N1 = −N2 and θYM = 0, and in subsection 6.3

we perform a similar analysis for the case |N1| ≫ |N2| and θYM = 0. In both cases we find

that the value of the flux at which metastability breaks down is in rough agreement with

the estimate given by equation (6.3).

6.1 Two loop corrections to Veff

In this subsection we show that the higher order corrections to the periods alter the shape

of the flux induced effective potential. Along the locus S1 = −S2 > 0, the leading order

behavior of the effective potential is:

V
(0)
eff =

|α|2
π (2M − log t)

(
4π2 −

∣∣∣∣
N

α

∣∣∣∣
2

(2M − log t) log t

)
(6.4)

where we have introduced the parameter t ≡ S1/g∆3 = −S2/g∆3. This potential possesses

a single extremum which is a minimum. We now show that this behavior is only correct

for very small t. The higher order behavior of Veff is:

Veff =
|α|2

π (2M + 6t − log t)

(
4π2 −

∣∣N
α

∣∣2 (2M − log t) log t

−
∣∣N

α

∣∣2 (
68Mt + 204t2 + 28t log t

)
)

. (6.5)

To determine the appearance of a local maximum in Veff , we compare the relative t depen-

dence of all terms in the above expression. The appearance of a local maximum is due to

the term proportional to 68Mt. We may therefore approximate Veff as:

Veff ≃ V
(0)
eff − 68M |N |2

π

t

2M − log t
(6.6)

≡ V
(0)
eff + V (2). (6.7)

We now show that for a suitable range of values, this new term causes Veff to develop a

local maximum and a local minimum.

To this end, first consider the derivative of V
(0)
eff with respect to t:

dV
(0)
eff

dt
≃ |α|2

πt(2M − log t)2

(
−4M2

∣∣∣∣
N

α

∣∣∣∣
2

+ 4π2 + 4M

∣∣∣∣
N

α

∣∣∣∣
2

log t −
∣∣∣∣
N

α

∣∣∣∣
2

(log t)2

)
. (6.8)
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Figure 7: Plot of Veff/ |α|2 in the two loop approximation along the locus S1/g∆3 = −S2/g∆3 > 0

for a flux configuration with N1 = −N2. In this plot Λ0/∆ ∼ 104 and |N1/α| ∼ 0.1.

Note that the term in parentheses is a quadratic polynomial in log t and therefore achieves

a maximal value. By including the contribution from dV (2)/dt, we find that for suitable

values of |N/α|, the equation dVeff/dt = 0 possesses at least two solutions. These solutions

correspond to a metastable minimum and a nearby maximum for the effective potential.

6.2 Breakdown of metastability: N1 = −N2

When N1 = −N2 ≡ N and θYM = 0, the metastable minima of Veff correspond to two

equal size branch cuts aligned along the real axis of the complex x-plane. To study the

appearance of an instability in Veff , we return to our general approach of solving for the

fluxes as a function of moduli. The only non-trivial moduli dependence arises from the

ratio:
α

N
= − 4πi

g2
YMN

. (6.9)

Along the locus S1 = −S2 > 0, the moduli dependent function α/N may assume the same

value multiple times. This implies that for a given set of fluxes, there are multiple critical

points of Veff .

We now briefly switch perspectives and view these critical points as functions of α/N .

When these critical points approach the same point in moduli space, the effective potential

develops a flat direction. Viewed as a function of moduli, when the ’t Hooft parameter:

λ ≡ g2
YM |N | (6.10)

reaches a maximal value, the system develops an instability.

We now determine the value of t for which λ attains a maximum. It follows from

equation (4.17) and the expressions of appendix A that:

8π2

λ
= − log t + M + M + t(6 + 20M + 20M − 10 log t2) + O(t2 log t). (6.11)
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Note that to leading order in t, λ−1 ∼ − log t + M + M and therefore does not possess a

minimum. The quantity λ−1 is minimized when:

t∗ = − 1

20W−1 (−e−L)
(6.12)

where L ≡ log
∣∣Λ4

0/∆
4
∣∣ + log

(
20e−7/10

)
and W−1 is the −1th branch of the Lambert W-

function.

It is also of interest to study the ∆ dependence of t∗. For sufficiently small t∗ and ∆,

we have:

log

∣∣∣∣
Λ0

∆

∣∣∣∣
4

≃ 1

20t∗
. (6.13)

Fixing the value of t, we conclude that the system always develops an instability once ∆

is sufficiently small. In particular, we see that by tuning ∆ to a sufficiently small value, t∗
can be made arbitrarily small, justifying the two loop approximation.

To conclude this subsection we estimate the value of g2
YM |N | for which Veff develops an

instability. It follows from equations (6.11) and (6.13) that for sufficiently small ∆ and t∗:

exp

(
8π2

λ∗

)
= 20

∣∣∣∣
Λ0

∆

∣∣∣∣
4

log

∣∣∣∣
Λ0

∆

∣∣∣∣
4

(6.14)

where λ∗ is the value of the bare ’t Hooft coupling at the phase transition. If we now drop

the factors 20 and log
∣∣Λ0

∆

∣∣4 in the above expression, we obtain:

1

λ∗
∼ 1

4π2
log

∣∣∣∣
Λ0

∆

∣∣∣∣
2

(6.15)

up to factors of order unity. This is in agreement with the analysis leading to equation (6.3).

Even so, equation (6.15) should be viewed as a crude upper bound.

6.2.1 Masses and the mode of instability: N1 = −N2

Although the above analysis establishes that Veff develops an instability for sufficiently

large values of the flux, it does not directly indicate the mode of instability. It also does

not address whether additional modes of instability appear before reaching such a flux

configuration. We now show that all the other modes are stable up to this point and that the

unstable mode of the system corresponds to the cuts remaining equal in size and expanding

towards each other. To establish this, we now compute the bosonic mass spectrum for fluxes

close to the value where we expect to lose metastability. After canonically normalizing the

kinetic terms of S1 and S2 and expanding Veff to quadratic order, the masses squared are:

m2
RA =

a2

1 − v
+ 2a |N |

(
− 10

1 +
√

v
+

7

(1 − v)π Im τ11

)
(6.16)

m2
RS =

a2

1 − v
+ 2a |N |

(
− 10

1 −√
v

+
7

(1 − v)π Im τ11

)
(6.17)

m2
IS =

a2

(1 +
√

v)
2 + 2a |N |

(
10

1 +
√

v
+

−3

(1 +
√

v)
2
π Im τ11

)
(6.18)

m2
IA =

a2

(1 −√
v)

2 + 2a |N |
(

10

1 −√
v

+
17

(1 −√
v)

2
π Im τ11

)
(6.19)

– 25 –



J
H
E
P
0
7
(
2
0
0
7
)
0
7
3

0.121750.12180.121850.12190.12195 0.122
N

�������������
È Α È

5

10

15

20

25

30

35

40

m2
�������������������������
LUV

2 È Α È2

RS

IS

Figure 8: Plot of the two smallest masses m2
RS

and m2
IS

as a function of |N/α| for Λ0/∆ ∼ 104.

At a value of |N/α| ∼ 0.122 the system develops an instability. This value is in rough agreement

with the estimate of equation (6.15).

where in the above, RA denotes the real anti-symmetric mode corresponding to both Si’s

real with one cut growing while the other shrinks, RS denotes the real symmetric mode

corresponding to both Si’s real with both cuts growing in size together, and IS and IA are

similarly defined for the imaginary components of the Si’s. Further, we have introduced

the parameters:

a =
|N |

2πt Im τ11
, v =

Im τ12
2

Im τ11 Im τ22
(6.20)

where all moduli dependent functions are explicitly evaluated at the critical point deter-

mined by the ’t Hooft coupling λ. In equations (6.16)–(6.19), the term proportional to a2

corresponds to the leading order contribution to the masses squared computed in [6], and

the term proportional to 2a |N | corresponds to the two loop correction to this value. As

expected based on general symmetry arguments, we find that as a function of |N/α|, m2
RS

approaches zero as the flux approaches the value given by equation (6.15). In figure 8 we

show the behavior of m2
RS and the next smallest mass squared m2

IS as a function of |N/α|
near the regime where metastability is lost.

It is also of interest to consider the difference in masses between the bosonic and

fermionic fluctuations dictated by the underlying N = 2 structure of the theory. We find

that the masses of the fermions naturally group into two sets of values. At leading order

in 1/N , the N = 2 supersymmetry of the theory is spontaneously broken. This indicates

the presence of two massless goldstinos. Labeling the fermionic counterparts of the gauge

bosons and the Si’s respectively by ψ
(i)
A and ψ

(i)
S , we find that when N1 = −N2, the non-

zero masses of the canonically normalized fermionic fields are all equal and given by the

value:

|mψ| =
a

(1 − v)
+ |N | 7 + 10

√
v

1 − v
(6.21)

where as before, the first term corresponds to the leading order mass and the second term

is the two loop correction to this value. In figure 9 we compare the masses squared of the
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Figure 9: Plot of log(m2/(|α|2 Λ2
UV

)) as a function of |N/α| for Λ0/∆ ∼ 104. The bosonic and

fermionic masses squared are given by equations (6.16)–(6.19) and (6.21), respectively.

bosonic and fermionic fluctuations.

Although we do not include the details here, we find more generally that for vacua

which satisfy S1 = −S2, the system develops an instability at a similar value of |N/α|. In

this case, the mode of instability causes the cuts to expand in size and rotate towards the

real axis of the complex x-plane. This is in agreement with the physical expectation that

the flux lines annihilate most efficiently when the branch cuts are aligned along the real

axis of the complex x-plane.

6.3 Breakdown of metastability: |N1| ≫ |N2|

We now study the behavior of Veff for flux configurations with |N1| ≫ |N2| and θYM =

0. More precisely, we also take N1 small enough so that the two loop approximation

of Veff is valid. In this case, the modulus t1 ≡ S1/g∆3 fluctuates much less than t2 ≡
−S2/g∆3. Further, because the behavior of Veff is relatively insensitive to the value of

α/N2, it is sufficient to fix α/N2 and determine the value of α/N1 for which Veff develops

a flat direction.

To this end, we employ a strategy similar to that of subsection 6.2 and use the attractor-

like equations to treat α/N1 as a function of the single modulus t2. Because a larger amount

of flux passes through the S3 corresponding to t1, it is enough to expand α/N1 to first order

in t1 and to leading order in log t2. Extremizing α/N1 with respect to t2, we find that Veff

develops a flat direction when:

8π2

g2
YM |N1|

≃ M

80t1
. (6.22)

Using equation (4.4) to approximate the value of t1 yields the value of λ1 ≡ g2
YM |N1| for
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which the system develops an instability:

1

λ1,∗
≃ − 1

8π2
W−1

(
− 1

80

log
∣∣Λ0

∆

∣∣2
∣∣Λ0

∆

∣∣2

)
(6.23)

where λ1,∗ denotes the bare ’t Hooft coupling at the phase transition. To obtain a crude es-

timate of when we expect to lose metastability, we treat the left hand side of equation (6.22)

as an order one number, obtaining:

1

λ1,∗
∼ 1

8π2
log

∣∣∣∣
Λ0

∆

∣∣∣∣
2

. (6.24)

This estimate is in accord with equation (6.3).

As in subsection 6.2, it is important to compute the masses squared of the bosonic

fluctuations at the metastable minimum in order to determine the mode of instability for

this flux configuration. In this case, the appropriate linear combination of fields which

diagonalizes the mass matrix is somewhat messier and we defer the details of this compu-

tation to appendix B. We find that the unstable mode corresponds to the smaller branch

cut increasing in size at a much faster rate than its larger counterpart.

7. Endpoints of a phase transition

For sufficiently large ’t Hooft coupling, the metastable vacua present at weak coupling cease

to exist. The moduli subsequently roll to larger values so that a perturbative expansion in

the glueball fields Si is no longer valid. As the branch cuts increase in size and meet each

other, the 3-cycle B1 − B2 reduces to zero size. We have checked numerically that over

this range the potential attains a minimal value only once the cuts touch. Because no flux

passes through B1 − B2, the moduli will not be stabilized away from the corresponding

conifold point. Near this region, the contribution of new light states associated to a D3-

brane wrapping B1 − B2 and an instanton gas of D5-branes all wrapping the same cycle

will determine the low energy dynamics of the theory.

Let us first consider the contribution due to the D5-branes. From the perspective

of the spacetime, a D5-brane wrapping B1 − B2 corresponds to a domain wall solution

which separates vacua with distinct values of the flux. Indeed, for vacua near the semi-

classical expansion point, this is the primary mechanism by which the vacuum can decay

to a supersymmetric flux configuration [6]. As B1 −B2 collapses, the corresponding action

for quantum tunneling tends to zero and a gas of D5-branes will scan over all available

flux configurations. This will necessarily change the shape of the potential for the moduli.

When enough flux has been annihilated, it is then possible for the moduli to subsequently

either quantum mechanically tunnel through moduli space or (if the shape of the potential

has changed enough) classically roll back out to the semi-classical regime. Letting the

vector
−→
N∗ denote the critical value of the fluxes for which metastability is lost, the flux

vector for the new metastable minimum will differ from
−→
N∗ by a finite amount.

Next consider the contribution due to the D3-brane. As the 3-cycle B1 −B2 collapses,

the geometry approaches a conifold point such that both the Kähler metric and Veff develop
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singularities. Just as in the supersymmetric case, the additional light states which resolve

this singularity correspond to a D3-brane wrapped over B1 − B2. Because an analysis

of a generic flux configuration would require a fairly precise knowledge of the periods

near this region in moduli space, we restrict our discussion to the case N1 = −N2 with

the branch cuts aligned along the real axis of the complex x-plane. In subsection 7.4 we

present evidence that if we ignore the presence of nearly tensionless domain walls, the light

magnetic states of the D3-brane condense and cause such a flux configuration to transition

to a non-Kähler manifold.

The rather different physical nature of the D5-brane instanton gas and massless states

contributed by the D3-brane indicate that a more detailed analysis of the endpoint of this

phase transition is likely to be quite difficult. Our general expectation, however, is that

the contribution due to the D5-branes will typically cause the moduli to relax back to the

semi-classical expansion point. Indeed, in the case |N1| ≫ |N2|, the N2 units of flux can be

treated as a probe of the background flux configuration determined by N1. In this case it is

doubtful that such a small perturbation could cause the geometry to undergo a transition

to a non-Kähler manifold.

The situation is less clear when N1 ∼ −N2. As we show in subsection 7.1, when

N1 = −N2 ≡ N and along the locus S1 = −S2 > 0, the value of the potential when the

cuts touch is independent of N . This implies that while the gas of tensionless domain walls

can still drive the system back to a metastable vacuum, it is not energetically favorable to

eliminate a small amount of flux. The additional light magnetic states due to the D3-brane

can then potentially influence the endpoint of the phase transition.

The rest of this section presents additional details concerning the flux configuration

N1 = −N2 ≡ N and is organized as follows. In subsection 7.1 we show that when S1 =

−S2 > 0, the value of Veff at the point where the cuts touch is independent of N . This

computation allows us to determine in subsection 7.2 the minimal drop in flux necessary to

tunnel back out to the semi-classical regime. In subsection 7.3 we describe in more detail

the singular behavior of Veff by passing to a new basis of special coordinates. Using this

dual magnetic description we show in subsection 7.4 that in the absence of D5-brane effects,

a condensate of light magnetic states causes the geometry to transition to a non-Kähler

manifold.

7.1 Energy near cuts touching

We now show that as the cuts touch along the locus S1 = −S2 > 0, the effective potential

approaches a constant value independent of N . By virtue of equation (4.11), Veff may be

written as:

Veff

|α|2
=

1

τ++ + 2M−M
2πi

(
4i − 2i

(
det τ +

M − M

2πi
τell

) ∣∣∣∣
N

α

∣∣∣∣
2
)

(7.1)

where τ++ = τ11 + τ22 + 2τ12 is the “center of mass” coupling, τell = τ11 + τ22 − 2τ12 is the

complex structure modulus of the elliptic curve, and as before, M = log
(
Λ2

0/∆
2
)
. Note

that as the cuts touch, τell tends to zero. Because τ11 = τ22, this implies τ12 tends to τ11
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Figure 10: Depiction of Veff/ |α|2 as a function of δ ≡ a+
1 − a−

1 = a+
2 − a−

2 > 0 with N1 = −N2 ≡
N . The value of Veff at the point where the cuts touch is independent of N . When N is small

(dashed red), the system possesses a metastable minimum with energy density V
(1)
meta < Vtouch. For

intermediate values of N which still admit a metastable minimum (dot dashed blue), the energy

density of the vacuum is V
(2)
meta > Vtouch. For large enough values of N (solid purple), the system

undergoes a phase transition and no metastable minimum exists.

and thus det τ tends to zero. We therefore conclude that Veff approaches the value:

Veff → 4i |α|2

4τ11 + 2M−M
2πi

. (7.2)

Next, recall from appendix A that the behavior of τ11 is of the form (B − M)/2πi where

B is a function of the moduli which is independent of α,N and M . The value of Vtouch is

then:

Vtouch =
2π |α|2

Bt + log
∣∣Λ0

∆

∣∣2
(7.3)

where Bt denotes the value of B when the cuts touch. This is manifestly independent of

N . Finally, we note that as ∆ tends to zero, so too does Vtouch.

7.2 Flux hysteresis

Close to the region in moduli space where the cuts touch, a gas of nearly tensionless

D5-branes can cause the system to tunnel back out to a metastable configuration with

lower flux. This tunneling will cause the flux to undergo hysteresis. In this subsection
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|α|2
Veff

δ

δtouch

metaV

a)
b)

Figure 11: Depiction of Veff/ |α|2 as a function of δ ≡ a+
1 −a−

1 = a+
2 −a−

2 > 0 with N1 = −N2 ≡ N .

The figure shows flux configurations which possess a metastable minimum (dashed red) and those

which do not (solid purple). Close to the region in moduli space where the cycle B1 −B2 collapses,

the presence of nearly tensionless domain walls can cause the amount of flux to jump. To reach a

metastable minimum near the semi-classical expansion point, the moduli then either classically roll

(a) or tunnel through moduli space (b).

we determine the minimal size of this jump in the flux number. Turning the discussion

around, this also determines the range of values for which a metastable vacuum near the

semi-classical expansion point can tunnel to the region where the cuts nearly touch.

We begin by characterizing the possible transition points for tunneling processes along

the locus S1 = −S2 > 0. In addition to the metastable vacua near the semi-classical

expansion point, there is another vacuum with identical energy where the branch cuts

overlap almost completely. To increase the scope of our discussion, we briefly consider

more general configurations such that S1 > 0 > S2. With notation as in section 4, the

endpoints of the branch cuts in the semi-classical regime satisfy a+
1 > a−1 > a+

2 > a−2 with

special coordinates defined by the integrals:

S1 =
1

2πi

a+
1∫

a−

1

ydx S2 = − 1

2πi

a+
2∫

a−

2

ydx. (7.4)

where the choice of signs is dictated by branch cut considerations. In the region where the

branch cuts overlap, we instead have a+
1 > a+

2 > a−1 > a−2 with special coordinates defined
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by the integrals:

S′
1 =

1

2πi

a+
1∫

a+
2

ydx S′
2 = − 1

2πi

a−

1∫

a−

2

ydx. (7.5)

It therefore follows from geometric considerations that there is a highly non-trivial duality

in the low energy effective field theory between vacua with Si small and vacua with S′
i

small. In addition to these two physically indistinguishable configurations, there is the

local singular minimum where the cuts touch.

The system can only tunnel from the region where the cuts touch to a metastable

vacuum with small Si when:

Vmeta ≤ Vtouch (7.6)

where Vmeta denotes the value of Veff evaluated at such a metastable critical point and

Vtouch is given by equation (7.3). Approximating Vmeta by equation (5.2), the flux must

therefore satisfy the bound:

g2
YM |N | ≥ 4π2

log
∣∣Λ0

∆

∣∣2

(
1 −

√
Bt

Bt + log
∣∣Λ0

∆

∣∣2

)
. (7.7)

It now follows from equations (6.15) and (7.7) that in jumping from a flux configuration

which does not admit a metastable vacuum near the semi-classical expansion point to one

which does, the flux drops by an amount:

δ |N | ≥ 4π2

g2
YM log

∣∣Λ0
∆

∣∣2

√
Bt

Bt + log
∣∣Λ0

∆

∣∣2
. (7.8)

Turning the discussion around, the range of fluxes for which it is possible to tunnel

from a metastable vacuum near the semi-classical expansion point to the region where the

cuts touch is:

4π2

log
∣∣Λ0

∆

∣∣2
& g2

YM |N | ≥ 4π2

log
∣∣Λ0

∆

∣∣2

(
1 −

√
Bt

Bt + log
∣∣Λ0

∆

∣∣2

)
(7.9)

where the crude upper bound follows from equation (6.15) and the requirement that a

metastable minimum exists. Note in particular that the admissible range of values of the

’t Hooft coupling which permit such a process is parametrically tied to the value for which

metastability is lost. Thus, nearly as soon as we increase the ’t Hooft coupling to a value

where this quantum effect can contribute, it is overtaken by classical effects.

7.3 Dual magnetic description

Near the region in moduli space where the cuts touch, the fields S1 and S2 have become large

and it is appropriate to change to a dual magnetic basis of fields. From the perspective

of the geometry, this corresponds to performing a change of basis which preserves the
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intersection pairing of the geometry. Using this dual basis, we now show that the effective

potential develops a cusp when the cuts touch.6

The appropriate change of basis is dictated by the geometry of the Riemann surface.

Along the entire locus considered, S1 +S2 has remained zero. Further, the cycle B1−B2 is

close to zero size. This implies that the new A-cycles are Ã1 = B2 −B1 and Ã2 = A1 +A2.

Dual to these are new B-cycles B̃1 = A1 and B̃2 = B2. Note that this new basis preserves

the intersection pairing of the geometry. The dual magnetic coordinates S̃i and Π̃i are

therefore related to the original special coordinates by:

S̃1 = Π2 − Π1 S̃2 = S1 + S2 (7.10)

Π̃1 = S1 Π̃2 = Π2. (7.11)

It follows from Picard-Lefschetz singularity theory that the only non-trivial monodromy

arises from the transformation S̃1 7→ e2πiS̃1. We therefore conclude that the leading order

behavior of Π̃2 is regular and Π̃1 depends logarithmically on S̃1:

Π̃1 =
1

2πi
S̃1 log

S̃1

g∆3
+ O(S̃0

1). (7.12)

For a general flux configuration, the induced superpotential in the new coordinates is:

Weff =

∫
H3 ∧ Ω = αS̃2 + (N+ + N−) S̃1 + 2N+Π̃2 (7.13)

where N± ≡ (N2 ± N1) /2. Note that Weff is independent of Π̃1. In particular, when

N1 = −N2 ≡ N , the superpotential is independent of both of the Π̃i’s. The entries of the

new period matrix are:

τ̃ij =
∂Π̃j

∂S̃i

. (7.14)

Because Π̃2 is regular, we may approximate the Kähler metric as:

Im τ̃ij = − 1

4π


 log

∣∣∣ eS1
g∆3

∣∣∣
2

c12

c12 c22


 (7.15)

where the cij are non-zero constants. In the new coordinates, the effective potential is:

Veff

(
S̃1, S̃2

)
=

[
−N α

] 1

Im τ̃

[
−N

α

]
(7.16)

in the obvious notation. It therefore follows that Veff attains a minimum at S̃1 = 0.

Replacing the S̃i by fields X̃i with canonically normalized kinetic terms,7 the derivative

of Veff with respect to X̃1 is:
∂Veff

∂X̃1

∼ 1

S̃1

1

f(S̃1, S̃2)
(7.17)

6Recall that a differentiable function f(x) of a single real variable is said to have a cusp at the point a

if f ′(x) → ±∞ as x → a∓. A similar definition holds for functions of several variables.
7Although such a field redefinition will in general introduce anomalies into the Lagrangian density, this

will not alter the conclusions of our analysis.
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where f contains at most log S̃1 type divergences. We therefore conclude that the potential

has a cusp at S̃1 = 0.

7.4 A further phase transition

The singular behavior of the effective potential implies the presence of additional light

states which have been integrated out. As in the case of the conifold [41, 42], these light

degrees of freedom correspond to a D3-brane wrapping the vanishing 3-cycle B1 − B2. In

N = 2 language, this corresponds to a hypermultiplet which is charged under the gauge

boson of the U(1) vector multiplet with scalar component S̃1. The superpotential is now:

Weff = αS̃2 + (N+ + N−) S̃1 + 2N+Π̃2 + hS̃1QLQR (7.18)

where h is a Yukawa coupling and QL and QR denote the N = 1 chiral multiplets of the

hypermultiplet. At a critical point of Veff , the Q’s condense with expectation value:

〈QLQR〉 =
N

h
. (7.19)

This condensate signals the presence of a new holomorphic 2-cycle Σ = ∂A1 in the geometry

with size |N/h|. Perhaps surprisingly, the resulting manifold is non-Kähler!

To see this, let us suppose to the contrary that the new geometry is a Calabi-Yau

threefold. In this case, the absence of any other normalizable (1, 1) forms implies that the

(1, 1) form kΣ which measures the volume of Σ determines the local metric of the new

geometry. It now follows from Stokes’ theorem that:

∫

A1

dkΣ =

∫

Σ

kΣ 6= 0. (7.20)

This implies that kΣ is not closed. We therefore conclude that the resulting manifold is

not a Calabi-Yau threefold, but instead belongs to the category of generalized Calabi-Yau

threefolds [43]. While it is doubtful that the resulting physical configuration is supersym-

metric or even metastable, a proper analysis is beyond the scope of this paper and we defer

a full study of this question to future work.

8. Conclusions

In this paper we have studied the phase structure of a strongly coupled supersymmetry

breaking configuration of D5-branes and anti-D5-branes wrapped over homologous rigid

S2’s of a non-compact Calabi-Yau threefold using the large N dual description of this

system. In much of this paper we focused on the closed string dual geometry with two

branch cuts. Even in this simple case, higher order corrections to the potential for the

glueball fields generate an elaborate phase structure which can already be seen at the two

loop level. Near the semi-classical expansion point, this two loop effect lifts the degeneracy

in energy density between the many confining vacua of the theory. When the scale of

confinement is not exponentially suppressed, this generates a large number of additional
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metastable vacua. For sufficiently large values of the ’t Hooft coupling this same effect

also lifts the metastable vacua present at weak coupling. After this phase transition, the

branch cuts expand in size until they are close to touching. Although the presence of

nearly tensionless domain walls close to this region of moduli space will most likely cause

the system to relax to a metastable vacuum of lower flux, the presence of new massless

states when the cuts touch may also allow the geometry to transition to a non-Kähler

manifold. We now discuss some implications of this work.

As the separation ∆ between the branes decreases, the glueball potential develops an

instability. Although it is tempting to identify this instability with the open string theory

tachyon, there is a potentially serious problem with this interpretation. Indeed, it follows

from equation (6.15) that the effective potential develops an instability when:

1

g2
YM |N | ∼ log

∣∣∣∣
Λ0

∆

∣∣∣∣
2

. (8.1)

On the other hand, the tachyonic mode of the brane/anti-brane system is independent of

N because this constant factors out of all relevant open string amplitudes. We therefore

conclude that an identification of the two instabilities is not naively correct.

We have also seen a preliminary indication that the number of critical points of Veff

crucially depends on the amount of flux in the closed string holographic dual. As this

amount of flux changes, a local maximum and minimum may merge. Such a change in

the number of metastable minima cannot be detected by a Morse-theoretic index. This

may have implications for recent attempts to count the number of supersymmetry breaking

vacua in flux compactifications. Indeed, many of the techniques developed thus far rely

on similar indices to count the number of admissible vacua [44]. It would therefore be

interesting to determine whether such methods properly account for the metastable vacua

studied in this paper.

Although a more detailed analysis of the phase structure near the region of moduli

space where the branch cuts touch will most likely be difficult, we have seen that when

N1 ∼ −N2, the geometry may undergo a further phase transition to a non-Kähler manifold.

Even so, the decay of the vacuum due to flux line annihilation may obstruct this intriguing

possibility from contributing to the phase structure of the theory. It is likely that a proper

description of the effective theory near this region in moduli space will require a more

generalized effective potential which treats both the moduli and the fluxes as dynamical

variables. Even if the geometry can transition to a non-Kähler manifold, the resulting

configuration is unlikely to be stable. It would be interesting to determine the endpoint of

this further phase transition.

In much of this paper we restricted our analysis to the two cut geometry. While this

should provide an adequate characterization of “two body”interactions, it is possible that

the interaction of three or more cuts could lead to further novel phases. Although we still

expect the phases of the glueball fields to align in an energetically preferred configuration,

the relative orientation between the cuts will depend on the location of the ai. Indeed,

treating the branch cuts as small dipole moments, an energetically preferred configuration

may be frustrated for a large lattice of cuts, much as in the two dimensional Ising model on a
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triangular lattice. It is well-known in the setting of condensed matter systems that magnetic

frustration can produce novel phases such as spin liquids and glasses. It is therefore likely

that a similarly rich class of phenomena are present in metastable multi-cut geometries.
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A. Two cut semi-classical τij and Fijk

In this appendix we collect explicit expressions for τij and Fijk = ∂iτjk for the two cut

geometry defined by equation (2.3). Setting ∆ ≡ a1 −a2, t1 ≡ S1/g∆3 and t2 ≡ −S2/g∆3,

we have [18]:

2πiτ11 = log t1 − log
Λ2

0

∆2
+ (4t1 + 10t2) +

(
32t21 + 182t1t2 + 118t22

)
+ O(t3) (A.1)

2πiτ12 = − log
Λ2

0

∆2
+ (−10t1 − 10t2) +

(
−91t21 − 236t1t2 − 91t22

)
+ O(t3) (A.2)

2πiτ22 = log t2 − log
Λ2

0

∆2
+ (4t2 + 10t1) +

(
32t22 + 182t1t2 + 118t21

)
+ O(t3), (A.3)

and:

2πig∆3F111 =
1

t1
+ 4 + (64t1 + 182t2) + O(t2) (A.4)

2πig∆3F112 = −10 + (−182t1 − 236t2) + O(t2) (A.5)

2πig∆3F122 = 10 + 236t1 + 182t2 + O(t2) (A.6)

2πig∆3F222 = − 1

t2
− 4 − 64t2 − 182t1 + O(t2). (A.7)

B. Mass spectrum for |N1| ≫ |N2|

In this appendix we compute the bosonic and fermionic masses for flux configurations with

|N1| ≫ |N2|, θYM = 0 and S1 > 0 > S2. With the kinetic terms of the Lagrangian density

canonically normalized, the 4 × 4 bosonic mass squared matrix m2
Bosonic takes the block

diagonal form:

m2
Bosonic = A(R) ⊕ A(I) (B.1)

where the A(R,I) are 2 × 2 matrices of the form:

A(R,I) =




“
∂
(R,I)
1 +∂

(R,I)
2

”2
Veff

1+v −
“
∂
(R,I)
1 −∂

(R,I)
2

”“
∂
(R,I)
1 +∂

(R,I)
2

”
Veff√

1−v2

−
“
∂
(R,I)
1 −∂

(R,I)
2

”“
∂
(R,I)
1 +∂

(R,I)
2

”
Veff√

1−v2

“
∂
(R,I)
1 −∂

(R,I)
2

”2
Veff

1−v


 (B.2)
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and A(R) (A(I)) corresponds to the mass matrix for the real (imaginary) components of

the Si’s. In the above we have defined:

∂
(R)
j =

1√
Im τjj

∂

∂ Re Sj
, ∂

(I)
j =

1√
Im τjj

∂

∂ Im Sj
, v =

Im τ12
2

Imτ11 Im τ22
, (B.3)

and for future use we also introduce:

a =
|N1|

2πt1 Im τ11
, b =

|N2|
2πt2 Im τ22

. (B.4)

In the above expressions the components of τij correspond to their value at the critical

point of Veff and should therefore be treated as constants. When |N1| ≫ |N2|, the masses

squared and eigenmodes of the block A(R) are:

m2
Re S1

=
b2

(1 − v)2

(√
1 −√

v

1 +
√

v
, 1

)

R

⊕ (0, 0)I (B.5)

m2
Re S2

= a2 − 2a

(
10|N2| −

2|N1| + 5|N2|
Im τ11π

) (
−

√
1 +

√
v

1 −√
v
, 1

)

R

⊕ (0, 0)I (B.6)

and the masses squared and eigenmodes of the block A(I) are similarly:

m2
ImS1

=
b2

(1 − v)2

(√
1 −√

v

1 +
√

v
, 1

)

I

⊕ (0, 0)R (B.7)

m2
ImS2

= a2 + 2a

(
10|N2| +

2|N1| + 5|N2|
Im τ11π

) (
−

√
1 +

√
v

1 −√
v
, 1

)

I

⊕ (0, 0)R . (B.8)

Grouping the fermions according to the supermultiplet structure inherited from the N = 1

supersymmetry of the branes, the non-zero fermion masses are:

mψS
=

1

1 − v

(
a +

2|N1| + 5|N2| + 10|N1| Im τ12
Im τ22

Im τ11π

)
(B.9)

mψA
=

1

1 − v

(
b +

2|N2| + 5|N1| + 10|N1| Im τ12
Im τ11

Im τ22π

)
(B.10)

with similar notation to that given above equation (6.21). By inspection of the above

formulae, we see that the two loop correction increases the difference between the bosonic

and fermionic masses already present at leading order.

Keeping g2
YM |N2| fixed, we now determine the mode which develops an instability as

the ’t Hooft coupling g2
YM |N1| approaches the critical value where the original metastable

vacua disappear. The determinant of each block of the mass matrix is:

detA(R) =
4096π8 log t1 log t2

g8
YMt21t

2
2

(
log t1 log t2 − log |Λ0|2

|∆|2 (log t1 + log t2)
)6 (B.11)

×


 log t1 log t2 − 20t1 (log t1)

2
(
log |Λ0|2

|∆|2 − log t1

)

−20t2 (log t2)
2
(
log |Λ0|2

|∆|2 − log t2

)
+ · · ·


 (B.12)
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detA(I) =
4096π8 log t1 log t2

g8
YMt21t

2
2

(
log t1 log t2 − log |Λ0|2

|∆|2 (log t1 + log t2)
)6 (B.13)

×


 log t1 log t2 + 20t1 (log t1)

2
(
log |Λ0|2

|∆|2 − log t1

)

+20t2 (log t2)
2
(
log |Λ0|2

|∆|2 − log t2

)
+ · · ·


 . (B.14)

It follows from the last line of each expression that only m2
Re S1

or m2
Re S2

can vanish.

Furthermore, because m2
Re S1

≫ m2
Re S2

, the mode of instability will cause the smaller cut

to expand towards the larger cut. For |N1| ≫ |N2| this occurs at a value of t1 given by:

1 ∼ 20

(
− log t1 + log

∣∣∣∣
Λ0

∆

∣∣∣∣
2
)

t1. (B.15)

Note that this is similar in form to the critical value of the moduli found in equation (6.13)

for the case N1 = −N2.
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